Each block (known as a “bit”) is represented by powers of 2.
2!7 = 2 x 2 x 2 x 2 x 2 x 2 x 2 = 128
2!6 = 2 x 2 x 2 x 2 x 2 x 2 = 64 = 64
2!5 = 2 x 2 x 2 x 2 x 2 = 32
2!4 = 2 x 2 x 2 x 2 = 16
2!3 = 2 x 2 x 2 = 8
2!2 = 2 x 2 = 4
2!1 = 2
2!0 = 1
Â
Finally at the lowest level (in binary) we can see each of the individual bits broken down to make up the calculations above:
Zero row of bits: 0 0 0 0 0 0 0 0
First row of bits: 0 0 0 0 8 4 0 0
Second row of bits: 0 0 0 16 8 4 0 0
Third row of bits: 0 0 32 16 8 4 0 0
Fourth row of bits: 0 64 32 0 8 4 0 0
Fifth row of bits: 0 64 32 16 8 4 2 0
Sixth row of bits: 0 0 0 0 8 4 0 0
Seventh row of bits: 0 0 0 0 0 0 0 0
The (x) represents the number raised to the power. An example is on line two where it shows 2(4) is multiplied as 2 x 2 = 4.
The calculations look like this:
0(7)Â Â 0(6)Â Â 0(5)Â Â 0(4)Â 0(3)Â Â 0(2)Â Â 0(1)Â Â 0(0)Â
0(7)Â Â 0(6)Â Â 0(5)Â Â 0(4)Â 2(3)Â Â 2(2)Â Â 0(1)Â Â 0(0)Â
0(7)Â Â 0(6)Â Â 0(5)Â Â 2(4)Â 2(3)Â Â 2(2)Â Â 0(1)Â Â 0(0)Â
0(7)Â Â 0(6)Â Â 2(5)Â Â 0(4)Â 2(3)Â Â 2(2)Â Â 0(1)Â Â 0(0)Â
0(7)Â Â 2(6)Â Â 2(5)Â Â 2(4)Â 0(3)Â Â 0(2)Â Â 0(1)Â Â 0(0)Â
0(7)Â Â 2(6)Â Â 2(5)Â Â 2(4)Â 2(3)Â Â 2(2)Â Â 2(1)Â Â 0(0)Â
0(7)Â Â 0(6)Â Â 0(5)Â Â 0(4)Â 2(3)Â Â 2(2)Â Â 0(1)Â Â 0(0)Â
0(7)Â Â 0(6)Â Â 0(5)Â Â 0(4)Â 0(3)Â Â 0(2)Â Â 0(1)Â Â 0(0)Â
Â
Pingback: Atari Graphics 3 - Atari 65XE